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SOLUTTON OF RAREFIED GAS TRANSPORT. PROBLEMS. .
by Morris Perlmutter
Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT g 60 ?3

A discussion of application of the Monte Carlo method to rarefied gas
heat transfer is given. A sample problem of heat transfer through a rare-
fied gas between infinite flat plates.is treated. Hard sphere molecular col-
lisions and a wall accomodation coefficient of 1 are assumed. The target
molecule distribution is assumed to be Maxwellian. The results are com-
pared to approximate analytical methods and to another Monte Carlo solution.

INTRODUCTION

In rarefied gas transport problems the usual solutions using Navier
Stokes' equation for momentum transfer or the Fourier equation for conduc-
tion are no longer applicable. This is because these equations assume
local isotropy and small gradients compared to the path lengths of the mole-
cules. These assumptions are not valid in the case of rarefied gases. We
must then resort to the more fundamental Boltzmann equation. This equation

is difficult to treat by the usual analytical procedures because of its

‘complexity. The Monte Carlo method allows us to reduce the complexity of

the analysis at the expense of added numerical computation and is not re-
stricted by the many simplifying assumptions generally made to allow analyt-
ical solutions.

The Monte Carlo procedure is a model sampling technique. We create a

model and then follow histories of sample molecules through this model.
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The sample histories are obtained by making choices at points of decision
from the appropriate probability distribution. By averaging certain prop-
erties of the sample molecules at various positions we can obtain the macro-
scopic quantities of interest.

For purposes of illustrating the Monte Carlo method let us consider
the problems of heat transfer between parallel plates enclosing a rarefied
gas. A discussion of much of the previous work on this problem is given in
references 1 to 5.

The model is shown in figure 1. The hot wall is considered to be at
temperature TW,O and the cold wall at temperature Tw,l' A rarefied
hard sphere molecule gas is contained between the walls.

The sample molecule histories are started at the wall O by picking
velocity components for the sample molecule leaving the wall from the ap-
propriate distribution of velocities of the absorbed and re-emitted mole-
cules. The space between the walls is divided into zones as shown in fig-
ure 1. The sample molecule after leaving the wall will either pass through
the first zone or have a collision with a target molecule in this zone.
This will depend on whether the path length to collision for the sample
molecule is longer or shorter than the distance the sample molecule must
travel to pass through the zone. If the sample molecule passes through the
first zone with no collision, it is started again at the beginning of the
next zone with its velocity components unchanged.

If there is a collision in the zone the point of collision is found at
the end of the path length to collision. A target molecule is picked from
the distribution of target molecule collision partners in the zone. The dis-

tribution of target molecule velocities is assumed uniformly Maxwellian




throughout each zone. A collision calculation is then carried out for the
sample agd target molecule collision partners, and new velocity components
for the sample molecules are found. The history of the sample molecule is
then continued from the point of collision with the new sample molecule
velocity components. The target molecule collision partner is ignored after
collision.

A new path length to collision is found for the sample molecule, and
this is compared in length to the distance from the point of collision to
the next zone. If the path length to collision is greater, the sample mole-

cule is started in the next zone with its velocity components unchanged. In

the other case there is a collision in the zone and the collision calculations

are repeated as before.

If the sample molecule strikes the upper wall, it is assumed to be ab-
sorbed and is reemitted with new velocity components picked from the ap-
propriate distribution of velocities based on the upper wall temperature.
After leaving the upper wall it is followed as before. The history is com-
pPleted when the sample molecule is incident on the lower wall and then & new
sample history is begun. This is continued until the desired number of
sample histories are completed.

The transport and fluid characteristics of interest are the density
distribution, temperature distribution, and heat transfer across the channel.
These can be obtained as in reference 6 by locating scoring positions at
various locations across the channel (see fig. 1). By scoring the various
characteristics of the sample molecules as they pass the scoring cross sec-
tion, we can obtain the transport properties and fluid characteristics of

interest.



The distribution of target molecules, which is assumed uniform in each
zone, will greatly affect the results since this will determine the path
length to collision for the sample molecule and also the velocity component
distribution of the target molecule collision partner in each zone. In the
present analysis it was assumed that the target molecules in each zone were
in a Maxwellian velocity distribution based on a different local temperature
and density in each zone. Then by carrying out the Monte Carlo solution
based on this assumed distribution of target molecules the temperature and
density in each zone can be found. The Monte Carlo solution is then rerun
using the new found local temperature and density in the Maxwellian distri-
bution of target molecules. The problem is iterated in this manner until
the density and temperature distribution found from the sample molecule
histories agreed with the density and temperature distribution used for the
target molecules.

The assumption of a local Maxwellian distribution for the target mole-
cules would be most applicable near equilibrium conditions, that is, cases
with small temperature gradients and short mean free paths. It appears
possible to extend the analysis to more realistic distributions of target
molecules than were used in the present case as for instance a two-sided
Maxwellian as used in an analytical solution in reference 5.

In references 1 and 2 a Monte Carlo solution is used to treat a similar
problem. In that analysis the solution is carried out with an assumed dis-
tribution of target molecules in a tabular form. By scoring the velocitiles
of many sample molecules as they pass through each zone they can obtaln the

velocity distribution of the molecules in each zone in a tabular form.




These are then used as the target molecule distributions in the next itera-
tion. This process is continued until the sample molecule distribution
found agrees with the target molecule distribution assumed. Then from the
distributions in each zone the macroscopic quantities of interest can be
found by numerical integration of the moments of the distribution. The pre-
sent method, however, avoids the finding and storing of éntire distributions
of target molecule for each increment.

In the Monte Carlo method since the distribution of. target molecules is
an approximation to the true distribution only conservation of mass is
satisfied exactly since molecules are not allowed to "disappear" in transit
between the walls. Conservation of momentum and energy can only be con-
sidered in an average sense because the collision partners are not recorded.

NOMENCLATURE
c average thermal velocity (ZkT/M)l/2
D channel height

X 2
-u
erf(x) error function, (2/‘/;)14: e du

f probability distribution function

f+,f_ probability distribution function of molecules moving in positive,
negative V2 direction

Kn Knudson number, A /D = M/+/2 SpyD

k Boltzmann constant

M mass of molecule

N number of sample molecules emitted from surface O 1in Monte Carlo

run, proportional to the flux of molecules leaving surface O



P pressure

P zone or scoring position number

Pe last scoring position number

Q property of sample molecule

(Q) averaged quantity d/,Qf asv

(Q), averaged quantity f ar, adv

R random number between O and 1

S mutual collision cross section, 50°

S4sS. number of sample molecules through scoring position in positive,
negative Xxp direction

T absolute temperature

A molecular velocity

v* velocity after collision

X1 X2,Xz coordinates

's defined by egs. (B6) and (B7)

n defined by eqs. (B6) and (B7)

8 collision rate of sample molecule with target molecules

A path length to collision

0,8 mean free path length

1l dimensionless velocity, V/C

MR, A defined by eq. (AS)

P mass density

o diameter of hard sphere molecule

) angle between sample molecule and target molecule velocities




Subscripts:

A averaged

P increment number
Pe last increment

R relative velocity
8 sample molecule

t target molecule

w,0;w,1 at wall O, 1

0,1 evaluated next to wall O, 1

1,2,3 coordinate directions

+,- positive or negative direction
ANALYSTS

Start of Sample Molecule History at the Wall
The sample molecule history will begin at the surface with temperature
Tw,O' To pick the components of velocity of the molecules leaving the sur-
face the simplest assumption is that the molecules incident on the wall are
perfectly accommodated, that is, are in a Maxwellian distribution at the
wall based on the wall temperature. This assumption is discussed in refer-
ence 3. The normalized Maxwellian velocity distribution of the molecules

moving away from the wall (V, > 0) is given as

~~
'._I
~

p+,O 2p, o
T 3 203 exp O) avy dv, dV3 vhere V, >0

The O/M is the number density of molecules moving away from the wall,

and CO is the thermal velocity (TT 'I‘w ;)1/2. If we consider the positive
V)



Xo direction normal to the wall, the distribution of velocities of the mole-
cules leaving the wall per unit time per unit area is V2f+’o (refs. 1, 2,
and 6). This can be transformed to cylindrical coordinates VZ = Vz,

Vy = V. cos 8, Vz = V,, sin & and normalized by (v2)+,0 = Co//n

(ref. 1) to give

3
Vofy o 4%V 2V,

f(e)VZ)Vr) =77 = eXpil- 5
Vs ) 4 2
2 +,O KCO CO

Vr ae de dVr = fefvzfvr as de av..

(2)

The distributions for fefvzfv can be written separately as
r

fg a0 = 38 (3)
an
r 2\ |
2V, vy
£y Vg = 5 lexp | - T3 || 4V, (3b)
2 Co CO g
r
v, ng
fy aV, = ——|exp |- 5 }| av (3c)
N N )

The velocity components of our sample molecule leaving the surface must be
picked from these distributions. This same result was used in references 1
and 6. A convenient way of picking from a distribution for the high speed
computer is to transform the distribution to a uniform distribution in R
by setting the random number R equal to the cumulative distribution func-

tion. For instance

R = fdG:-—e- (4)

Then by using a high speed computer to generate a random number R




between O and 1, we can obtain 6 from equation (4) such that for a

large number of samples picked in this manner the distribution in equa-
tion (3a) will be satisfied.

Similarly we can pick Vé from

V.

2 2v, ve

R = — |exp| - _z

Vo o2 o2

o 0 0

av, (5)

or, since picking R 1is equivslent to picking 1 - R,

Vp = (-C§ 1n RVz)l/2 (6)
s0 that by picking RV2 we can obtain V2 from equation (6). The velocity
Vr is obtained in the same manner and is given by

Vp = (-C& 1n er)l/2 (M)

The Vs, Vi, and ® picked then give the direction and velocity of the

s
sample molecule as it leaves the wall. This same result was used in refer-
ences 1 and 6.

The sample molecule is then followed through the first zone until
either a collision occurs with another molecule or the sample molecule
passes through the zone. This will depend on whether the path length of the
sample molecule to collision is shorter or longer than the path length
through the zone.

Calculation of the Path Length A to Collision
for the Sample Molecule

The probability that a sample molecule will collide in the incremental

path length A to AN + dN is given in reference 7 as
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M,8
where %u g 1s the mean free path to collision of the sample molecule mov-
2

ing at velocity Vg in that zone.

We can then pick a path length to collision for the sample molecule from
this distribution by using the same procedure described earlier
A = 'Au,s In Ry » (9)
To use this relationship, we must first calculate the mean free path AH;S
in the zone.

As shown in appendix A the mean free path of a sample molecule moving
at velocity Vg through a Maxwellian gas at density p with a thermal

velocity C is (eq. (A8))

1/2
2 Kn
s = "s (10)

> £ exp( “g) + (erf pg) [ po + 1
Pa ﬁl;z ° 5 2ug

where pg 1s the velocity of the sample molecule nondimensionalized by the

thermal velocity of the zone (“s = VS/C), D is the distance across the
channel and Kn is the usual definition of Knudson number for hard sphere
molecules in a Maxwellian distribution
Mo M

D 2 SpAD

Equation (10) can then be used in equation (9) to obtain the distance to col-

Kn = (11)

lision for the sample molecule in the zone. If there is a collision in the
zone, the next step is to pick a collision partner and calculate the new

direction and velocity of the sample molecule after collision.
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Calculating New Sample Molecule Velocity Components
and Direction After Collision
The distribution of target molecules hit by the sample molecule is
given in appendix B following the derivation in reference 7. From this dis-
tribution we pick a target molecule collision partner. The new velocity
of the sample molecule after collision with the target molecule is given

following the derivation in reference 1.

N
1

vt = % (Vag + Vi) +3 Vg(1 - 26%)

1/2
vy =% (Vg + Vig) + VR(1 - b2) /2 g ) (12)

1 1/2

V¥ = 3. (Vag + Vag) + VR(1 - b?) / = J
vhere

1/2
VR = [(Vls - V)2 4 (Vgg - Vau)? + (V3g - Vst)z],

The values of H and = are obtained as discussed in reference 1 by pick-
ing two rapdom numbers and using them in the following equations
H=2Ry -1, Z=2R - 1, z:,nd b2 = HZ + =2 (13)
where bZ must be less than one. If bZ is greater than one, a new set of
random numbers must be chosen to find H and =.
Completion of Sample Molecule Histories

After collision a new path length to collision is found and this is
compared to the distance the sample molecule must travel in its new direc-
tion to leave the zone. If this distance is smaller than the new path length
to collision, the molecule is then started through the next zone as shown in

figure 1. This process is continued until the sample molecule returns to the
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wall O and then a new sample molecule history is started. This process
is continued for the desired number of sample histories.
Scoring to Find the Macroscopic Flow Properties

The macroscopic fluid characteristics we must obtain are the density
distribution and temperature distribution across the channel since these are
needed in the target molecule distribution. Also of interest is the net
heat transferred across the channel. These properties are obtained as fol-
lows. Scoring positions are located at various distances across the channel
as shown in figure 1. The average quantity of @ transported across the

scoring cross section p in the positive x, direction by the sample mole-

2
cules crossing it can be written as
X!
A - = (14)
Sip (fv £ d3v) [CHECPYR N
27+ P
where S is the number of sample molecules passing across the scoring

+,P

cross section p in the positive x, direction and Q is some quantity
each sample molecule carries. Similarly the average quantity Q trans-

ported in the negative xp direction is

Q

2 AQvy)_

z(p : )P" (15)
S')P (P VZ -1p

Since there is no net flow across the channel and since all sample histories
start and end at the wall O,
Se,p = 5.p (16a)

and
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(fv2f+ <13v)IJ = - (f Vof._ d5v)p (16b)

We can then write

S S
p(V2Q) = ,
A e OICEDIE (a7)
v S '
®rp 24p D P
The number of sample molecules that pass the scoring cross section at p
in the positive V2 direction S+’p divided by the total number of sample

molecule histories started at wall O, N, can be related to the mass flux

passing in the positive V, direction at p by

S
+,p Py, oV p

(18)

where p+,o(V)+,o the mass flux leaving wall O is equal to p+,OC+,o/nl/2

(ref. 1). Combining equations (17) and (18) results in

o(u50), = 2050 ZQ Z (19)

If Q is taken as l/VZ’ equation (19) becomes

p+p 1/z zvz EVZ (20)

The average density in the channel is then obtained by averaging the density

of 8ll the scoring cross sections from p=0 to p= Pr
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Pf-l
o P Pp P
o = - ;L % o = + o —) - :E : p : (2le)
+,0 Pr +0  Pr0] £ Pro0

P \T
( A‘) = A0 7z (21b)
p+, 0/ xn—e T, l)

TW,O

Similarly we can obtain the local pressure from

S
2 2 2 2 ~ 2 2
o TN A E N K )
2 -3 2 B 1/2 A
(pV )+,o (V)40 3Cy, ONﬁ / \\ 2
2
since (pV§)+}O = ——L%riig as given in reference 1 and V? = V% + Vg.

Dividing equation (22) by p/p+ o> @s obtained from equation (20), then gives
b

the local temperature

P
(v2 4+ v2) 2
T TBrh eV2). 0 (23)
To 3c2 P
+O o)
- +,0

as shown in reference 1 the collisionless solution (Kn - ) is given by

Ty (T_wg)l/ ? (24)
(To)Knew - \Iy,0

Finally, the heat transfer across the channel can be obtained from
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S+:P S':P

. p C
q=%p((V§+V§)>=—§'£7%§9 Z(Vg**vi)'—é (Vg + V&) (25)

. . . R 1 1
This can be nondimensionalized by m=3 (D(VZ(V% + V%)))+’0 iy (D+,Oci,0):

the heat leaving the wall as given in (ref. 1) and then divided by p+/pA

to give
1/2 S+)P S':P
1 2 2 Py
= q=-—5 E (V8 + Vv3) - E (V8 + V&) (—5-;) (26)
p,C 2NC A
A +,o +’O

This can be compared to the collisionless result given in reference 1

1/2
/2 ) (Tw!l / ] (Twzl)
3 T T

w,0 W
PAC+,0 Jipwo ’ ’

(27)
In this manner the local temperature and density in each zone can be obtained.
This is compared to the assumed temperature and density distribution used in
the local Maxwellian distribution of the target molecules in each zone and
the results are iterated till agreement is obtained.
RESULTS AND CONCLUSIONS

The results for the density distributions and temperature distributions
are shown in figures 2 and 3. The heat-transfer results are shown in
figure 4. These results were compared with the Gross-Ziering eight moment
half range solution as given in reference 4 and Haviland and Lavin nonlinear
four moment solution given in reference 5 and their Monte Carlo solution
given in reference Z.

Both Monte Carlo solutions are in better agreement with the Gross-

Ziering solution and poor agreement with the nonlinear four moment solution.
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The present technique is very flexible and can be readily extended to
different types of molecular collisions and to different boundary condi-
tions. Using the Maxwellian distribution for the target molecules resulted
in a nonconstant heat transfer across the channel. This was averaged to
obtain the present result. More realistic target molecule distributions,
however, can be used in the analysis. An important shortcoming of the
present method is the need of a high speed computor and extensive comput-
ing time. Each solution required about 1 hour of running time on the IBM

7094.




17

APPENDIX A
EVALUATION OF MEAN FREE PATH

The number of collisions per unit time de(vR,vt) of a sample molecule
moving at velocity Vg through target molecules in velocity volume space
d3Vt for hard sphere molecules is given in reference 6 as
a8 = pf, VpS a5V, (A1)
where VR is the velocity of the target mclecules relative to the sample
molecule velocity before collision, VR,i = Vt,i - Vs,i’ as shown in fig-

2 where o¢ is

ure 5,and S is the mutual collision cross section =g
the diameter of the molecule. The relative velocity VR as seen from fig-
ure 5 can be written as

Vg = (V& + V2 - 2v,V, cos ot)L/2 (a2)
where @' 1is the angle between V¢ and Vg. For the case of a Maxwellian

distribution following the analysis given in reference 7 the collision rate

can be written as
S 2 2 .
a8(py,9',0) = £ [exp (-u )] wEug sin @' a9' d8' dpg (A3)
t 372 t

where u is the nondimensionalized velocity V/C and the angles @

and ©' are shown in figure 5. To obtain the total collision rate for the
target molecules over all velocities, this must be integrated over o', 6',
and p%. We can integrate this over 6' from © to 2n and integrate
over @' from O to = to give

ae(ut) = émgtg% [exp (-u%)] ”12:uR,A dpg (A4)

where
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7
1/2 sin Q!
ulj (kg + p& - 2uguy cos 9') / = 49

HR,A T
or
2 .
g * ut/3“s If ug > My
Mo p = (A5)
R, A + u8/3u,  if >
ut Ko/ Oy Mg U'S
We can then integrate over My from O to e« +to obtain the total col-
lision frequency for a sample molecule moving at velocity ug through a
Maxwellian gas as
2
exp (-pf) -1
- QSCf s 1
8 = S5 \ 17z + (erf us) Hg +-—-——ZHS J (A6)

The dimensionless mean free path is then found as discussed in reference 7
by dividing the dample molecule velocity by the total collision rate to
give

Au

s v USM

-8 _ 2 _
D - 8 ~ Dps{;]]_;]é[exp (-ug)] + (erf pg) (“s +2i“s)‘}

Using the definition of Knudson number as given by equation (11) enables us

(A7)

to write

A -1 [ fexp (-u8) -1
_ﬁ_s_ = anl/zus (%\) {[——17# + (erf ps) (“s + _Z-%l-g)} (A8)

7
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APPENDIX B
PICKING THE TARGET MOLECULE COLLISION PARTNER
The velocity distribution of target molecules that the sample molecule
will collide with is discussed in reference 1 is given by
dG(Lut,cp',e) [exp (-p.%)]p%uR sin @' dQ' d6' dug

e alexp (-ud)]+ ﬁ5/2(erf “s)(fs +-§%;)

(B1)

The distribution in 6' for the target molecules is readily seen to be

£g, ao' = 397 (B2)
Then the ©6' can be picked from this distribution by

o' = 2R, (B3)

The distribution of Hy for the target molecules 1s obtained from the

marginal distribution

4lexp (- ut )] utuRA

£, duy - (B4)
1
M .{[exp (- uz)] + nl/z (erf u )(u + 30 E}
We can then pick from this distribution as before
Y(u ) ) + T](P‘ ) )
R, = - 5 “tl/z s Ht . (B5)
[exp (-pS)] + x*/4(ert us)(us + p,s)
where when Mg > By
3

A — \ 2 ut ( 2
T(Hs,ut) = -Zusut(exp(-ut)] + g Y (erf w) - 3 ﬁ; exp\-ut)

a 2 ~/x

— _ B6

- l‘Ls[ex;p ( ut)) + 20 (erf u) (B6)

n=0

and when Mg < by
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Y(Hs:ut) = Y(HSJHS)

Hz 4“2
1= oo GEN(E 1 Do 2] ()

To find ¢' for the target molecule, we can write the distribution of
target molecules as a product of a marginal times a conditional distribu-
tion

dG(Mt,¢')
— = £ )0 u) (B8)

then we must pick @' from the conditional distribution

2 2 _ t
(ug + ng - 2u u, cos ¢

HR,A

Picking ¢' for a given p is found as before from

)1/2 sin @' 4
2 (B9)

£ |uy) =

(p2 + 2 - 2up, cos 91)3/2 . liy - gl

372

R =

P! (B10)

Y 3
(bg + ug + 2ugug - |uy - Mgl

Then components of velocity of the target molecule must still be

transposed to the coordinate system of the channel. Taking Vét' in the

same direction as the V, coordinate as shown in figure 5 and Vét in the

same direction as the V3 coordinate we can obtain the component of

velocity for the target molecule in the primed system as

p! = p, cos @'

2t t
uit =y sin ¢' cos 6! (B11)
pt = Hy sin @' sin 6!

3t

Then by a simple rotation of the coordinate system through an angle @

around the Vz axis the components of velocity of the target molecule in
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the channel coordinates are given by

Hap = Hzg
Mot = uét cos @ - uit sin @

Mt

! sin + p' cos
“2t @ “1t P

(B12)
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Figure 2. - Density distribution across channel. Knudson number, 2.
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Figure 5. - Velocity of sample and target molecules at collision.




